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Abstract
Starting from a spectral problem, we derive a hierarchy of nonlinear evolution
equations. An explicit and universal Darboux transformation for the whole
hierarchy is constructed. The exact solutions for the hierarchy are obtained by
applying the Darboux transformation.

PACS numbers: 05.45.Yv, 02.30.Jr

1. Introduction

The investigation of the exact solutions of nonlinear evolution equations plays an important role
in the study of nonlinear physical phenomena. For example, the wave phenomena observed in
fluid dynamics, plasma and elastic media are often modelled by the bell-shaped sech solutions
and the kink-shaped tanh solutions. The exact solutions, if available, of those nonlinear
equations facilitate the verification of numerical solvers and aids in the stability analysis of
solutions. In the past few decades, there has been significant progress in the development
of various methods. Among them, the Darboux transformation is a powerful method to get
exact solutions of nonlinear partial differential equations. The key for constructing Darboux
transformation is to expose kinds of covariant properties that the corresponding spectral
problems possess. There have been many tricks to do this for getting explicit solutions
to various soliton equations, including the KdV equation, KP equation, Davey–Stewartson
equation, Yang–Mills flows, etc [1–8].

In this paper, we are interested in the Darboux transformation and exact solutions of a
equation hierarchy associated with the following spectral problem:

ψx = Uψ =
(

λq λ2 + λr + 1
2 (q2 + r2)

−λ2 + λr − 1
2 (q2 + r2) −λq

)
ψ, (1.1)
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which was first introduced by Cao and Geng in [9], where they considered a particular case of
the above spectral problem and showed that the associated involutive systems were generated
from a confocal generator. Yan considered a more general case of the above spectral problem
and showed that the eigenvalue problem was nonlinearized as a finite-dimensional completely
integrable Hamiltonian system under the Bargmann constraint between the potentials and the
eigenvalue functions [10].

The outline of our present paper is as follows. In section 2, we derive the equation
hierarchy associated with the spectral problem (1.1). In section 3, we construct Darboux
transformation for the hierarchy. In section 4, we construct exact solutions for the equation
hierarchy by using its Darboux transformation.

2. The soliton hierarchy

In order to derive the isospectral hierarchy associated with (1.1), we consider the stationary
zero-curvature equation

Vx = [U,V ], V =
(

a b + c

b − c −a

)
(2.1)

with

a =
∑
j�0

a2j+1λ
−2j−1, b =

∑
j�0

b2j+1λ
−2j−1, c =

∑
j�0

c2j λ
−2j ,

which gives rise to the following recurrence relations:

a2j+1 = − 1
2b2j−1x + qc2j − 1

2 (q2 + r2)a2j−1,

b2j+1 = 1
2a2j−1x + rc2j − 1

2 (q2 + r2)b2j−1,

c2jx = 2qb2j+1 − 2ra2j+1.

(2.2)

Then from (2.2), we further obtain the following recursive formula:(
a2j+1

b2j+1

)
= L

(
a2j−1

b2j−1

)
, j = 1, 2, . . . , (2.3)

where

L =
(

q∂−1q∂ + q∂−1r(q2 + r2) − 1
2 (q2 + r2) −q∂−1q(q2 + r2) − 1

2∂ + q∂−1r∂

r∂−1r(q2 + r2) + 1
2∂ + r∂−1q∂ r∂−1r∂ − r∂−1q(q2 + r2) − 1

2 (q2 + r2)

)
.

In order to derive the isospectral hierarchy associated with (1.1), we consider the auxiliary
problem

ψtn = V (n)ψ =
 n∑

j=0

(M2j+1λ
2(n−j)+1 + N2jλ

2(n−j)+2) + N2n+2

 ψ, (2.4)

where

M2j+1 =
(

a2j+1 b2j+1

b2j+1 −a2j+1

)
, N2j =

(
0 c2j

−c2j 0

)
.

The compatibility condition between (1.1) and (2.4) yields the zero-curvature equation

Utn − V (n)
x + [U,V (n)] = 0, (2.5)

which is equivalent to the following hierarchy:(
qtn

rtn

)
=

(
a2n+1x − (q2 + r2)b2n+1 + 2rc2n+2

b2n+1x + (q2 + r2)b2n+1 − 2qc2n+2

)
, n � 0. (2.6)
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Further we choose a1 = q, b1 = r, c0 = 1. From (2.3) we can easily prove that
a2j+1|(q,r)=(0,0) = b2j+1|(q,r)=(0,0) = 0 (1 � j � n). We also need to use the condition
c2j |(q,r)=(0,0) = 0 (1 � j � n + 1) to select the integration constant to be zero. Then
a2j+1, b2j+1(1 � j � n), c2j (1 � j � n + 1) can be uniquely determined by (2.3).

A direct calculation gives

c2 = 1
2 (q2 + r2), a3 = − 1

2 rx, b3 = 1
2qx,

c4 = 1
2 (rqx − qrx) − 1

8 (q2 + r2)2,

a5 = − 1
4qxx − 1

2q(qrx − rqx) − 1
8q(q2 + r2)2 + 1

4 rx(q
2 + r2),

b5 = − 1
4 rxx − 1

2 r(qrx − rqx) − 1
8 r(q2 + r2)2 − 1

4qx(q
2 + r2),

· · · .

(2.7)

Typical nonlinear systems (n = 1) in the hierarchy are

qt1 = − 1
2 rxx − r(qrx − rqx) − 1

4 r(q2 + r2)2 − 1
2qx(q

2 + r2),

rt1 = 1
2qxx + q(qrx − rqx) + 1

4q(q2 + r2)2 − 1
2 rx(q

2 + r2),
(2.8)

which are a new system of generalized derivative nonlinear Schrödinger equations (GDNS).
If we take q = Im(ψ), r = Re(ψ), then (2.8) reduces to

iψt = 1
2ψxx − 1

2 i|ψ |2ψx + ψ Im(ψψ∗
x ) + 1

4ψ |ψ |4,
which is the general form of the derivative nonlinear Schrödinger equation [11].

3. Darboux transformation

In this section, we will construct a Darboux transformation for the hierarchy (2.6). The
Darboux transformation is actually a special gauge transformation

ψ̃ = T ψ (3.1)

of the Lax pairs (1.1) and (2.4). It is required that ψ̃ also satisfies Lax pairs (1.1) and (2.4)
with some Ũ and Ṽ (n), i.e.

ψ̃x = Ũ ψ̃, Ũ = (Tx + T U)T −1, (3.2)

ψ̃t = Ṽ (n)ψ̃, Ṽ (n) = (Tt + T V (n))T −1. (3.3)

By cross differentiating (3.2) and (3.3), we get

Ũt − Ṽ (n)
x + [Ũ , Ṽ (n)] = T

(
Ut − V (n)

x + [U,V (n)]
)
T −1, (3.4)

which imply that in order to make system (2.6) invariant under the gauge transformation (3.1),
we should require Ũ , Ṽ (n) have the same forms as U,V (n) respectively. At the same time the
old potentials q, r in U,V (n) will be mapped into new potentials q̃, r̃ in Ũ , Ṽ (n). This process
can be iterated, and usually it yields a sequence of exact solutions for system (2.6). Following
the idea of [2], we can construct the Darboux transformation for the equation hierarchy (2.6).

We define that

U0 =
(

0 1
2 (q2 + r2)

− 1
2 (q2 + r2) 0

)
, U1 =

(
q r

r −q

)
, U2 =

(
0 1

−1 0

)
.

Then U can written as

U = U0 + U1λ + U2λ
2. (3.5)
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Let h = (h1, h2)
T be a solution of spectral problem (1.1) and (2.4) when λ = λ0 (λ0 �= 0);

then it is easy to see that h− = (h2,−h1)
T is also a solution of the spectral problem (1.1) and

(2.4) when λ = −λ0. We construct a new matrix

H = (h, h−).

By using (1.1) and (2.4), we can get that

Hx = U0H + U1H� + U2H�2,

Htn =
n∑

j=0

(M2j+1H�2(n−j)+1 + N2jH�2(n−j)+2) + N2n+2H,
(3.6)

where

� =
(

λ0 0
0 −λ0

)
.

We construct the Darboux matrix

T = λI + S, (3.7)

where

S = −H�H−1

= 1

h2
1 + h2

2

(−λ0
(
h2

1 − h2
2

) −2λ0h1h2

−2λ0h1h2 λ0
(
h2

1 − h2
2

) )
=

(
α β

β −α

)
. (3.8)

Substituting (3.7) into (3.2), we can get that

Ũ = Ũ0 + Ũ1λ + Ũ2λ
2, (3.9)

where Ũ0, Ũ1 and Ũ2 are determined by the following equations:

Ũ2 = U2, Ũ1 = U1 + SU2 − Ũ2S,

Ũ0 = U0 + SU1 − Ũ1S, Ũ0S = Sx + SU0.
(3.10)

With the help of the first equation of (3.6), we can prove that the third equation of (3.10) is
equivalent to the fourth one if the first two equations of (3.10) hold.

Substituting (3.7) into (3.3), we can get that

Ṽ (n) =
n∑

j=0

(M̃2j+1λ
2(n−j)+1 + Ñ2jλ

2(n−j)+2) + Ñ2n+2, (3.11)

where M̃2j+1, Ñ2j and Ñ2n+2 are determined by the following equations:

Ñ0 = N0,

M̃2j+1 = M2j+1 + SN2j − Ñ2j S,

Ñ2j+2 = N2j+2 + SM2j+1 − M̃2j+1S, 1 � j � n

Ñ2n+2 = N2n+2 + SM2n+1 − M̃2n+1S.

(3.12)

Next we will prove that Ũ and Ṽ (n) have the same forms as U and V (n) after some
transformations, respectively.
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Proposition 1. The matrix Ũ determined by (3.9) has the same form as U, that is,

Ũ = Ũ0 + Ũ1λ + Ũ2λ
2

=
(

0 1
2 (̃q2 + r̃2)

− 1
2 (̃q2 + r̃2) 0

)
+

(
q̃ r̃

r̃ −q̃

)
λ +

(
0 1

−1 0

)
λ2, (3.13)

where the transformations between q, r and q̃, r̃ are given by

q̃ = q − 2β, r̃ = r + 2α, (3.14)

where α, β are determined by (3.8). The transformation (ψ, q, r) → (ψ̃, q̃, r̃) is called a
Darboux transformation of the spectral problem (1.1).

Proof. From (3.10), we obtain that

Ũ2 = U2 =
(

0 1
−1 0

)
,

Ũ1 = U1 + SU2 − Ũ2S

=
(

q r

r −q

)
+

(
α β

β −α

) (
0 1

−1 0

)
−

(
0 1

−1 0

)(
α β

β −α

)
=

(
q − 2β r + 2α

r + 2α −q + 2β

)
=

(
q̃ r̃

r̃ −q̃

)
,

Ũ0 = U0 + SU1 − Ũ1S

=
(

0 1
2 (q2 + r2)

− 1
2 (q2 + r2) 0

)
+

(
α β

β −α

) (
q r

r −q

)
−

(
q − 2β r + 2α

r + 2α −q + 2β

) (
α β

β −α

)
=

(
0 1

2 (q2 + r2) + 2αr − 2βq + 2α2 + 2β2

− 1
2 (q2 + r2) − 2αr + 2βq − 2α2 − 2β2 0

)
=

(
0 1

2 [(q − 2β)2 + (r + 2α)2]
− 1

2 [(q − 2β)2 + (r + 2α)2] 0

)
=

(
0 1

2 (̃q2 + r̃2)

− 1
2 (̃q2 + r̃2) 0

)
.

So we get that the transformation (3.14) holds and Ũ has the same form as U. The proof is
completed. �

Next we will prove that Ṽ (n) also has the same form as V (n) under the transformations
(3.1) and (3.14).

Proposition 2. The matrix Ṽ (n) determined by (3.11) has the same form as V (n) under the
transformations (3.1) and (3.14).

Proof. Because Ṽ (n) can be expressed as

Ṽ (n) =
n∑

j=0

(M̃2j+1λ
2(n−j)+1 + Ñ2jλ

2(n−j)+2) + N2n+2,

we only need to prove that M̃2j+1, 0 � j � n, and Ñ2j , 0 � j � n + 1, have the same forms
as M2j+1 and N2j under the transformation (3.1) and (3.14), respectively.
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From (3.12), we get that

Ñ0 = N0 =
(

0 c0

−c0 0

)
=

(
0 1

−1 0

)
=

(
0 c̃0

−̃c0 0

)
, (3.15)

M̃1 = M1 + SN0 − Ñ0S

=
(

q r

r −q

)
+

(
α β

β −α

) (
0 1

−1 0

)
−

(
0 1

−1 0

) (
α β

β −α

)
=

(
q − 2β r + 2α

r + 2α −q + 2β

)
=

(
ã1 b̃1

b̃1 −ã1

)
, (3.16)

where

c̃0 = 1, ã1 = q̃, b̃1 = r̃ . (3.17)

Thus, we get that M̃1 and Ñ0, respectively, have the same forms as M1 and N0 after the
transformations.

Again by using (3.12), (3.15) and (3.16), through some calculations, we obtain that M̃2j+1

(1 � j � n) and Ñ2j (1 � j � n + 1) have the following forms:

M̃2j+1 =
(

ã2j+1 b̃2j+1

b̃2j+1 −ã2j+1

)
, Ñ2j =

(
0 c̃2j

−̃c2j 0

)
, (3.18)

where

ã2j+1 = a2j+1 − β(c2j + c̃2j ),

b̃2j+1 = b2j+1 + α(c2j + c̃2j ),

c̃2j = c2j + α(b2j−1 + b̃2j−1) − β(a2j−1 + ã2j−1).

(3.19)

Next we only need to prove that ã2j+1, b̃2j+1 (1 � j � n) and c̃2j (1 � j � n + 1) have
the same forms as a2j+1, b2j+1 and c2j , respectively, after the transformation (3.14).

By using (2.2) and (3.4), we have

Ũt − Ṽ (n)
x + [Ũ , Ṽ (n)] = T

(
Ut − V (n)

x + [U,V (n)]
)
T −1 = 0, (3.20)

which is equivalent to the following recurrence relations:(
ã2j+1

b̃2j+1

)
= L̃

(
ã2j−1

b̃2j−1

)
, j = 1, 2, . . . , (3.21)

where

L̃ =
(

q̃∂−1q̃∂ + q̃∂−1r(̃q2 + r̃2) − 1
2 (̃q2 + r̃2) −q̃∂−1q̃ (̃q2 + r̃2) − 1

2∂ + q̃∂−1̃r∂

r̃∂−1̃r(̃q2 + r̃2) + 1
2∂ + r̃∂−1q̃∂ r̃∂−1̃r∂ − r̃∂−1q̃ (̃q2 + r̃2) − 1

2 (̃q2 + r̃2)

)
,

and the equations(
q̃tn

r̃tn

)
=

(
ã2n+1x − (̃q2 + r̃2)̃b2n+1 + 2̃r̃c2n+2

b̃2n+1x + (̃q2 + r̃2)̃b2n+1 − 2̃qc̃2n+2

)
. (3.22)

From (3.21), we can easily prove that

ã2j+1|(̃q,̃r)=(0,0) = b̃2j+1|(̃q,̃r)=(0,0) = 0 (1 � j � n).

Again by using (3.21), (3.14) and (3.19), we have

c̃2jx |(̃q,̃r)=(0,0) = 2̃qb̃2j+1 − 2̃rã2j+1|(̃q,̃r)=(0,0) = 0.

On the other hand,

c̃2jx = ∂x(c2j + α(b2j−1 + b̃2j−1) − β(a2j−1 + ã2j−1))|(̃q,̃r)=(0,0)

= ∂x(c2j + αb2j−1 − βa2j−1)|(̃q,̃r)=(0,0), 1 � j � n + 1.
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Therefore,
c̃2j |(̃q,̃r)=(0,0) = c2j + αb2j−1 − βa2j−1|(̃q,̃r)=(0,0)

= f (t).
(3.23)

Note the fact

c2j |(q,r)=(0,0) = b2j−1|(q,r)=(0,0) = a2j−1|(q,r)=(0,0) = 0,

so the integral constant f (t) must be zero, i.e.

c̃2j |(̃q,̃r)=(0,0) = 0, 1 � j � n + 1.

We proved that

ã2j+1, b̃2j+1 (1 � j � n), c̃2j (1 � j � n + 1)

satisfy the same equations and the same boundary conditions with a2j+1, b2j+1, c2j , so they
must have the same forms. The proof is completed. �

From propositions 1 and 2, we get the following theorem.

Theorem 1. The solutions (q, r) of the hierarchy (2.6) are mapped into their new solutions
(̃q, r̃) under the Darboux transformations (3.1) and (3.14), where α, β are given by (3.8).

4. Applications of Darboux transformations

In this section, we will apply the Darboux transformation (3.14) to construct explicit solutions
of the hierarchy (2.6). As usual we make the Darboux transformation starting from a special
solution of (2.6). We start from q = q0, r = r0, and we choose

h(k) =
(

h
(k)
1

h
(k)
2

)
, 1 � k � N, (4.1)

as the solutions of the Lax pairs (1.1) and (2.4) when λ = λk . Then we could construct a
series of exact solutions of (2.6) as follows.

First, we construct

H(1) = (h(1), h(1)−), �(1) =
(

λ1 0
0 −λ1

)
,

S(1) = −H(1)�(1)(H (1))−1

= 1

h
(1)2
1 + h

(1)2
2

(
−λ1

(
h

(1)2
1 − h

(1)2
2

) −2λ1h
(1)
1 h

(1)
2

−2λ1h
(1)
1 h

(1)
2 λ1

(
h

(1)2
1 − h

(1)2
2

) )

=
(

α(1) β(1)

β(1) −α(1)

)
. (4.2)

Then by the use of theorem.1, we can get the new solutions q[1], r[1] of (2.6) from the
following equations:

q[1] = q0 − 2β(1), r[1] = r0 + 2α(1). (4.3)

With the help of (3.1), (3.7) and after some calculations, we can get the solutions of Lax pairs
(1.1) and (2.4), when q = q[1], r = r[1] and λ = λi . These solutions can be expressed as

h
(i)

[1] =
h

(i)

1[1]

h
(i)

2[1]

 = (λiI + S(1))

(
h

(i)
1

h
(i)
2

)
= λ1 + λi

[h(1), h(1)]


∣∣∣∣∣h(i)

1 [h(i), h(1)]

h
(1)
1 [h(1), h(1)]

∣∣∣∣∣∣∣∣∣∣h(i)
2 [h(i), h(1)]

h
(1)
2 [h(1), h(1)]

∣∣∣∣∣

 , (4.4)
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where

[h(i), h(j)] = h
(i)
1 h

(j)

1 + h
(i)
2 h

(j)

2

λi + λj

.

We construct

H(2) = (
h

(2)

[1] , h
(2)−
[1]

)
, �(2) =

(
λ2 0
0 −λ2

)
,

S(2) = −H(2)�(2)(H (2))−1

= 1

h
(2)2
1[1] + h

(2)2
2[1]

−λ2
(
h

(2)2
1[1] − h

(2)2
2[1]

) −2λ2h
(2)

1[1]h
(2)

2[1]

−2λ2h
(2)

1[1]h
(2)

2[1] λ2
(
h

(1)2
1[1] − h

(2)2
2[1]

)


=
(

α(2) β(2)

β(2) −α(2)

)
. (4.5)

Then we can get the new solutions q[2], r[2] of (2.6) from the following equations:

q[2] = q[1] − 2β(2), r[2] = r[1] + 2α(2). (4.6)

By a direct calculation, we have the following formulae:

h
(2)2
1[1] + h

(2)2
2[1] = 2λ2(λ1 + λ2)

2

[h1, h1]2
[h1, h1]([h1, h1][h2, h2] − [h2, h1]2), (4.7a)

h
(2)

1[1]h
(2)

2[1] = (λ1 + λ2)
2

[h1, h1]2

(
[h1, h1]2h

(2)
1 h

(2)
2 + [h2, h1]2h

(1)
1 h

(1)
2

− [h1, h1][h2, h1]
(
h

(1)
1 h

(2)
2 + h

(2)
1 h

(1)
2

))
, (4.7b)

h
(2)2
1[1] = (λ1 + λ2)

2

[h1, h1]2

(
[h1, h1]2h

(2)2
1 + [h2, h1]2h

(1)2
1 − 2[h1, h1][h2, h1]h(1)

1 h
(2)
1

)
. (4.7c)

So with the help of (4.4), (4.5), (4.7), after taking the Darboux transformation once again, we
can obtain the solution of Lax pairs (1.1) and (2.4) when q = q[2], r = r[2], λ = λ3,

h
(3)

[2] =
h

(3)

1[2]

h
(3)

2[2]

 = (λ3I + S(2))

h
(3)

1[1]

h
(3)

2[1]



= (λ3 + λ2)(λ3 + λ1)

[h1, h1][h2, h2] − [h2, h1]2



∣∣∣∣∣∣∣
h

(3)
1 [h(3), h(1)] [h(3), h(2)]

h
(1)
1 [h(1), h(1)] [h(1), h(2)]

h
(2)
1 [h(2), h(1)] [h(2), h(2)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
h

(3)
2 [h(3), h(1)] [h(3), h(2)]

h
(1)
2 [h(1), h(1)] [h(1), h(2)]

h
(2)
2 [h(2), h(1)] [h(2), h(2)]

∣∣∣∣∣∣∣


. (4.8)

If we have done the Darboux transformation N − 1 times and got the solutions of
(2.6) as q[N − 1], r[N − 1], we can express the solutions of Lax pairs (1.1) and (2.4)
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(q = q[N − 1], r = r[N − 1], λ = λN) as follows:

h
(N)

[N−1] =
h

(N)

1[N−1]

h
(N)

2[N−1]

 = �N



∣∣∣∣∣∣∣∣∣∣
h

(N)
1 [h(N), h(1)] · · · [h(N), h(N−1)]

h
(1)
1 [h(1), h(1)] · · · [h(1), h(N−1)]
...

...
. . .

...

h
(N−1)
1 [h(N−1), h(1)] · · · [h(N−1), h(N−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
h

(N)
2 [h(N), h(1)] · · · [h(N), h(N−1)]

h
(1)
2 [h(1), h(1)] · · · [h(1), h(N−1)]
...

...
. . .

...

h
(N−1)
2 [h(N−1), h(1)] · · · [h(N−1), h(N−1)]

∣∣∣∣∣∣∣∣∣∣


, (4.9)

where

�N = (λN + λ1)(λN + λ2) · · · (λN + λN−1)∣∣∣∣∣∣∣∣∣
[h(1), h(1)] [h(1), h(2)] · · · [h(1), h(N−1)]
[h(2), h(1)] [h(2), h(2)] · · · [h(2), h(N−1)]

...
...

. . .
...

[h(N−1), h(1)] [h(N−1), h(2)] · · · [h(N−1), h(N−1)]

∣∣∣∣∣∣∣∣∣

.

We construct

H(N) = (
h

(N)

[N−1], h
(N)−
[N−1]

)
, �(N) =

(
λN 0
0 −λN

)
,

S(N) = −H(N)�(N)(H (N))−1

= 1

h
(2)2
1[N−1] + h

(2)2
2[N−1]

−λN

(
h

(2)2
1[N−1] − h

(2)2
2[N−1]

) −2λNh
(2)

1[N−1]h
(2)

2[N−1]

−2λNh
(2)

1[N−1]h
(2)

2[N−1] λN

(
h

(1)2
1[N−1] − h

(2)2
2[N−1]

)


=
(

α(N) β(N)

β(N) −α(N)

)
. (4.10)

Then we can get the new solutions q[N ], r[N ] of (2.6) from the following equations:

q[N ] = q[N − 1] − 2β(N), r[N ] = r[N − 1] + 2α(N). (4.11)

This process can be iterated and usually it yields a sequence of new solutions.
In the end, we will give a simple example. We will construct the exact solutions for the

hierarchy (2.6). Substituting q = 0, r = 0 into the Lax pairs (1.1) and (2.4), we choose basic
solutions corresponding to λ = λ1 = r1e

π
4 i , i.e. λ2

1 = ir2
1 as follows:

h(1) =
(

c1e
θ1 + c2e

−θ1

−i(c1e
θ1 − c2e

−θ1)

)
, (4.12)

where θ1 = r2
1 x + r2n+2

1 t, n ∈ 4Z+, and c1, c2 are non-zero constants. We construct

H(1) = (h(1), h(1)−) =
(

c1e
θ1 + c2e

−θ1 −i(c1e
θ1 − c2e

−θ1)

−i(c1e
θ1 − c2e

−θ1) −(c1e
θ1 + c2e

−θ1)

)
, �(1) =

(
λ1 0
0 −λ1

)
,

S(1) = −H(1)�(1)(H (1))−1 =
(

α(1) β(1)

β(1) −α(1)

)

=
− 1/2λ1(c2

1e
2θ1 +c2

2e
−2θ1)

c1c2

1/2iλ1(c2
1e

2θ1 −c2
2e

−2θ1)
c1c2

1/2iλ1(c2
1e

2θ1 −c2
2e

−2θ1)
c1c2

1/2λ1(c1
2e2θ1 +c2

2e
−2θ1)

c1c2

 . (4.13)
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Thus from (3.14), we can get

q[1] = −2β(1) = − iλ1
(
c2

1e
2θ1 − c2

2e
−2θ1

)
c1c2

,

r[1] = 2α(1) = −λ1
(
c2

1e
2θ1 + c2

2e
−2θ1

)
c1c2

.

(4.14)

If we choose another basic solution corresponding to λ = λ2 = r2e
π
4 i, r2 �= r1 as follows:

h(2) =
(

c3e
θ2 − c4e

−θ2

−i(c3e
θ1 + c4e

−θ2)

)
, (4.15)

where θ2 = r2
2 x + r2n+2

2 t, n ∈ 4Z+, and c3, c4 are non-zero constants.
From (4.4), we have

h
(2)

[1] =
h

(2)

1[1]

h
(2)

2[1]

 =
 λ2c1c2c3e

θ2 −λ2c1c2c4e
−θ2 +λ1c

2
1c4e

2θ1−θ2 −λ1c
2
2c3e

−2θ1+θ2

c1c2

−i(λ1c1
2c4e

2θ1−θ2 +λ1c2
2c3e

−2θ1+θ2 +λ2c1c2c3e
θ2 +λ2c1c2c4e

−θ2)
c1c2

 .

We construct

H(2) = (
h

(2)

[1] , h
(2)−
[1]

)
, �(2) =

(
λ2 0
0 −λ2

)
,

S(2) = −H(2)�(2)(H (2))−1

= 1

h
(2)2
1[1] + h

(2)2
2[1]

−λ2
(
h

(2)2
1[1] − h

(2)2
2[1]

) −2λ2h
(2)

1[1]h
(2)

2[1]

−2λ2h
(2)

1[1]h
(2)

2[1] λ2
(
h

(1)2
1[1] − h

(2)2
2[1]

)


=
(

α(2) β(2)

β(2) −α(2)

)
.

With the help of Maple, we can get another exact solution of system (2.6) from (4.8)

q[2] = − iλ1
(
c2

1e
2θ1 − c2

2e
−2θ1

)
c1c2

− 2β(2),

r[2] = −λ1
(
c2

1e
2θ1 + c2

2e
−2θ1

)
c1c2

+ 2α(2),

(4.16)

where

α(2) = [
1/2λ2

(
λ2

2c
2
1c

2
2c3

2e2θ2 + 2λ2λ1c1
3c2c3c4e

2θ1 + λ2
2c2

1c
2
2c4

2e−2θ2

+ 2λ2λ1c1c2
3c3c4e

−2θ1 + λ1
2c1

4c2
4e

4θ1−2θ2 + λ1
2c2

4c2
3e

−4θ1+2θ2
)]

× [
c1c2

(
λ2

2c1c2c3c4 + λ2λ1c2
2c3

2e2θ2−2θ1 + λ2λ1c
2
1c

2
4e

−2θ2+2θ1 + λ1
2c1c2c3c4

)]−1

β(2) = [−1/2iλ2
(
λ2c1c2c3e

θ2 − λ2c1c2c4e
−θ2 + λ1c

2
1c4e

2θ1−θ2 − λ1c
2
2c3e

−2θ1+θ2
)

× (
λ1c

2
1c4e

2θ1−θ2 + λ1c
2
2c3e

−2θ1+θ2 + λ2c1c2c3e
θ2 + λ2c1c2c4e

−θ2
))]

× [
c1c2

(
λ2

2c1c2c3c4 + λ2λ1c2
2c3

2e2θ2−2θ1 + λ2λ1c
2
1c

2
4e

−2θ2+2θ1 + λ1
2c1c2c3c4

)]−1
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